Coronary CT Angiography: introduction

Contrast, drugs, technique optimization
Overview

- Coronary CT angiography
 - Basic protocol

- Contrast
 - General principles
 - Bolus types

- Drugs
 - Beta blockers
 - Nitroglycerin

- Optimize technique
 - Dose
Coronary CT Angiography

Basic 64 channel single source protocol
Coronary CT Angiography

Basic protocol
- Localizers
- Timing bolus in ascending thoracic aorta
- Contrast administration
- Diagnostic scan
- Image post-processing

AP and lateral localizers of the chest
Coronary CT Angiography

Basic protocol
- Localizers
- **Timing bolus in ascending thoracic aorta**
- Contrast administration
- Diagnostic scan
- Image post-processing

Timing bolus in ascending thoracic aorta
- Location below carina
- Inject 20 cc contrast + 20 cc saline @ 5 cc/s
- 6 sec delay
- Interscan delay 2 sec
- Repeat scan till contrast bolus passes through asc. TA

- ROI in ascending thoracic aorta
- Time-attenuation curve
- Contrast arrival time
Coronary CT Angiography

※ **Basic protocol**
 - Localizers
 - **Timing bolus in ascending thoracic aorta**
 - Contrast administration
 - Diagnostic scan
 - Image post-processing

※ **Timing bolus in ascending thoracic aorta**
 - Location below carina
 - Inject 20 cc contrast + 20 cc saline @ 5 cc/s
 - 6 sec delay
 - Interscan delay 2 sec
 - Repeat scan till contrast bolus passes through asc. TA

※ ROI in ascending thoracic aorta

※ Time-attenuation curve

※ Contrast arrival time
Coronary CT Angiography

* Basic protocol
 - Localizers
 - Timing bolus in ascending thoracic aorta
 - Contrast administration
 - Diagnostic scan
 - Image post-processing

Contrast saline

- 50 cc 5 cc/s
- 30 cc 5 cc/s
- 20 cc 5 cc/s
- 50 cc 5 cc/s
Coronary CT Angiography

* Basic protocol
 * Localizers
 * Timing bolus in ascending thoracic aorta
 * Contrast administration
 * Diagnostic scan
 * Image post-processing

RG Helical, pitch 0.2

Prospective triggered, step-and-shoot
Scan Acquisition

- Timing bolus at aortic root
- Triphasic contrast injection with dual syringe injector
- Scan acquisition at timing bolus peak + 5 sec
 - Cranial – caudal
 - 2 cm above root through heart
Patient preparation

• Beta-blockers
 • 50 – 100 mg PO
 • 40 – 60 minutes
 • Target HR < 65 bpm

• Nitroglycerin
 • 1 SL spray
 • 4 – 6 minutes
Contrast for coronary CTA
Contrast for coronary CTA

- Target coronary attenuation
- General principles of contrast enhancement
- Contrast concentration
- Bolus types
- Saline chaser
Target coronary artery enhancement

- Desired result of contrast bolus
- Allow visualization of the coronary artery lumen, wall, disease

- Lumen attenuation too low
 - Low contrast to noise
 - Overestimate degree of stenosis

- Lumen attenuation too high
 - Limit differentiation of lumen from mural calcification
Target coronary artery enhancement

- Desired result of contrast bolus
- Allow visualization of the coronary artery lumen, wall, disease

- Lumen attenuation too low
 - Low contrast-to-noise
 - Higher error rates

- Lumen attenuation too high
 - Limit differentiation of lumen from mural calcification
Target coronary artery enhancement

* Desired degree of arterial enhancement (300-350 HU)*

< 200 HU inadequate visualization

> 350 HU can make distinction of lumen from mural calcification difficult, underestimate stenosis.

> 500 HU lumen attenuation can compromise accuracy of lumen stenosis detection with noncalcified plaques as well.

> 500 HU decreases plaque detectability.

Johnson PT, AJR 2009;192:w214

Calcifications in proximal LAD

Ao attn

156 HU
Target coronary artery enhancement

Ao attn

156 HU

Ao attn

364 HU
Target coronary artery enhancement

* Desired degree of arterial enhancement (300-350 HU)*

 < 200 HU inadequate visualization

 With pulsating coronary phantom:

 > 350 HU can make distinction of lumen from mural calcification difficult, underestimate stenosis.

 > 500 HU lumen attenuation
 ➢ can compromise accuracy of lumen stenosis detection with noncalcified plaques as well.
 ➢ decreases plaque detectability.

* Reports with higher attenuation, upper limit maybe higher

Johnson PT, AJR 2009;192:w214
Contrast enhancement: general principles

- Degree of contrast enhancement
 - Amount of iodine
 - Tube voltage

- Increases proportionally with iodine concentration for a given tube voltage
 - Increase iodine concentration by 1 mg iodine / mL
 - 26 HU enhancement at 120 kVp
 - increases with lower kVp (for 1 mg/mL iodine)
 - 30 HU enhancement at 100 kVp
 - 40 HU enhancement at 80 kVp

<table>
<thead>
<tr>
<th>80 kVp</th>
<th>100 kVp</th>
<th>120 kVp</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 HU</td>
<td>30 HU</td>
<td>26 HU</td>
</tr>
</tbody>
</table>

Bae KT, Radiology, 2010;256(1):32
Contrast agents

Contrast media concentration

- Commercially available in wide range of concentrations
 - 240 – 370 mg Iodine per mL (US)

- Higher iodine load = higher mean coronary attenuation
- Any concentration of contrast can achieve the g l/s to achieve predetermined levels of coronary artery attenuation.
- Contrast volumes in general < 100 mL for 64-MDCT

<table>
<thead>
<tr>
<th>Concentration mg Iodine/mL</th>
<th>Mean volume mL</th>
<th>Range mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>93</td>
<td>60 - 150</td>
</tr>
<tr>
<td>350</td>
<td>89</td>
<td>60 - 125</td>
</tr>
<tr>
<td>370</td>
<td>91</td>
<td>60 - 150</td>
</tr>
</tbody>
</table>

Bae KT, Radiology 2010;256:32. Johnson PT, AJR 2009;192:w214
Bolus types

• Uniphasic
 • Contrast only

• Biphasic
 • Contrast + saline flush

• Triphasic
 • Contrast + blend + saline flush
Bolus types

- **Uniphasic**
 - Contrast only

- **Biphasic**
 - Contrast + saline flush

- **Triphasic**
 - Contrast + blend + saline flush

Advantages
- Simple
- Don’t need dual head injector

Disadvantages
- Higher contrast volumes
- Highest frequency of streak artifacts

Jin-guo L, Eur J Rad, 2009, May
Streak artifacts from right heart

Lowess smooth plot – probability of streak artifact increases with right-heart attenuation

Mitsumori LM, AJR 2010;194:w263
Streak artifacts from right heart

Right heart attenuation
406.9 ± 117.9 HU

Right heart attenuation
272.7 ± 55.2 HU
Bolus types

* **Uniphasic**
 - Contrast only

* **Biphasic**
 - Contrast + saline flush

* **Triphasic**
 - Contrast + blend + saline flush

Advantages
- Lower contrast amounts
- Higher attenuation of coronary arteries
- Low frequency of streak artifacts

Disadvantage
- Poor visualization of right heart structures

Jin-guo L, Eur J Rad, 2009, May
Poor visualization of right heart structures

Coronal aorta, AV

HLA and SAX mpr heart
Bolus types

- **Uniphasic**
 - Contrast only

- **Biphasic**
 - Contrast + saline flush

- **Triphasic**
 - Contrast + blend + saline flush

Advantages
- Lower contrast volume
 - Similar to amt of biphasic
- Less streak artifacts
- Intermediate attenuation in right heart (TRO)

Disadvantages
- Need dual head injector
- Variable blend percentages

Jin-guo L, Eur J Rad, 2009, May
Contrast Administration

- **Timing bolus at aortic root**
- **Triphasic contrast injection with dual syringe injector**
 - Phase 1 — 50 mL 100% iodixanol at 5 cc/s
 - Phase 2 — 50 mL blend 60% iodixanol with 40% saline at 5 cc/s
 - Phase 3 — 50 mL saline at 5 cc/s.
- **Scan acquisition at timing bolus peak + 5 sec**

Shuman WP, Radiology 2008;248(2):431
Intermediate attenuation in right heart to minimize contrast related streak artifacts but allow visualization of right heart structures.
Triple rule out CTA: contrast bolus

- simultaneously opacify three separate vascular territories
 - PA – CA – Thoracic aorta
 - Reflect both right and left heart circulations
Example clinical TRO case: diagnostic opacification of PA, Coronary arteries, and Aorta with relative clearing of the Right heart.

Mitsumori LM, AJR 2010;194:w263
Cardiac function
Saline Chaser

- Saline chaser widely used with coronary CTA

 - **Improves contrast efficiency**
 - Pushing contrast within IV tubing and peripheral veins into the central blood volume (12 – 20 cc in veins, 10 cc in tubing)
 - Increases iodine load and enhancement

 - **Clear contrast from SVC and right heart**
 - Reduces streak and beam-hardening artifact

Bae KT, Radiology 2010;256:32.
Johnson PT, AJR 2009;192:w214
Coronary CT angiography
introduction

Drugs – metoprolol and NTG
Optimizing patient’s heart rate to minimize motion artifacts

Cardioselective β-blocker
- Used to lower heart rate
- Rhythm more regular

Effects of oral dose seen within 1 hr, peak plasma concentrations at 90 min
- Peak effect of IV dose occurs between 5 and 10 min
- Plasma half-life for oral and IV in healthy volunteers ranges 3 – 4 hrs

Pannu HK, AJR, 2006;186:s341
Coronary motion

- RCA higher velocities
- motion trough 60 – 70 % of R-R
- higher heart rates
 - increased coronary velocities
 - narrower trough

Husmann, Radiology 2007, 245:567
metoprolol

contraindications

- Sinus bradycardia (hr < 60 bpm)
- Systolic BP < 100 mmHg
- Allergy to the medication
- Decompensated heart failure
- Asthma or COPD on B-agonist inhalers, active bronchospasm
 - h/o childhood asthma, no current asthma, no meds given BB
- Second/third degree heart block

protocol

- Dedicated Radiology nurse
 - Vitals
 - History
 - Screen for contraindications

- HR > 65 bpm
 - Metoprolol 50 or 100 mg PO
 - Reassess 40 – 60 min
 - Repeat dose

Schoepf UJ, Radiology 2007;244:1.
Pannu HK, AJR, 2006;186:s341
IV metoprolol

- 2.5 mg IV over 1 min
- Hr > 65 bpm, second dose after 5 min
- If remains elevated, 5 mg x 2 over 1 min, 5 min between doses
- Upto max dose of 15 mg

With contraindications to BB
- Can attempt calcium channel blockers
 - Diltiazem 0.25 mg/kg IV
 - Upto 25 mg total
 - Oral regimen (Cardizem)
 - 30 mg regular release

2.5 – 2.5 – 5 – 5 mg at 5 min intervals

Schoepf UJ, Radiology 2007;244:1.
Pannu HK, AJR, 2006;186:s341
Nitroglycerin

- **Vasodilator**
 - Relaxes vascular smooth muscle
 - Widely used with invasive coronary angiography
 - Optimize enhancement and size of lumen and small branches
 - Intra-arterial administration

- **For coronary CT angiography**
 - Significantly increases the volume and diameter of epicardial coronary arteries
 - Improves visualization of branch vessels
 - Less effect on stenotic segments could enhance detection of obstructive disease
 - Better correlation with angiography and IVUS

- **Sublingual spray (0.4 mg)**
 - Maybe more efficacious and have less side effects

Decramer I, AJR 2008;190:219
nitroglycerin

Adverse events

- Hypotension
- Flushing
- Headache

Contraindications

- Recent use (24 hrs) of phosphodiesterase inhibitors
 - Viagra (sildenafil)
 - Cialis (tadalafil)
 - Levitra (vardenafil)
 - Side effects can include severe hypotension and death
- Early MI
- Severe anemia
- Increased intracranial pressure
- Hypersensitivity to NTG

Schoepf UJ, Radiology 2007;244:48
Coronary CT angiography

introduction

Optimization of technique
ECG synchronization

※ Prospective ECG triggered
 • Axial, half scan, step-and-shoot acquisition
 • Dose 60 to 80% less than RG

RG Helical, pitch 0.2

Prospective triggered, pitch 1.0

Shuman WP, Radiology 2008;248:431
Prospective ECG Triggering

parameters

- **Step-and-shoot technique**
 - **Manual mA value**
 - **Body size**
 - **Center frequency**
 - **Heart rate**
 - **Beam on time**
 - **HR variability**

ranges and values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>200 – 800 mA</td>
</tr>
<tr>
<td>Center frequency</td>
<td>0 – 100 %</td>
</tr>
<tr>
<td>HR variability</td>
<td>75%</td>
</tr>
<tr>
<td>Beam on time</td>
<td>0 – 200 mS</td>
</tr>
<tr>
<td></td>
<td>100 mS</td>
</tr>
</tbody>
</table>
64 channel CTA

- Timing bolus at aortic root
- Triphasic contrast injection with dual syringe injector
- Scan acquisition at timing bolus peak + 5 sec

<table>
<thead>
<tr>
<th>Weight Range</th>
<th>mA Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 60 kg</td>
<td>400-450 mA</td>
</tr>
<tr>
<td>60 – 90 kg</td>
<td>500-550 mA</td>
</tr>
<tr>
<td>90 – 120 kg</td>
<td>600-650 mA</td>
</tr>
<tr>
<td>> 120 kg</td>
<td>700-750 mA</td>
</tr>
</tbody>
</table>

- No AEC (chest)
- Weight based
topogram attenuation estimates

※ region specific patient attenuation differences !
 • not reflected by weight
 • men vs women
 • short vs tall

206 lbs topo -44.4 hu
199 lbs topo -27.1 hu
207 lbs topo 15.1 hu
200 lbs topo 42.5 hu

Menke J, Radiology 2005;236:565
mA look-up table

• NG helical exam (NI 30) prescribed first

• View mA look-up table
 • mAs
 • 1.4 to 1.6x mA for PT

<table>
<thead>
<tr>
<th>station</th>
<th>x axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>750</td>
</tr>
<tr>
<td>2</td>
<td>750</td>
</tr>
<tr>
<td>3</td>
<td>326</td>
</tr>
<tr>
<td>4</td>
<td>607</td>
</tr>
<tr>
<td>5</td>
<td>750</td>
</tr>
<tr>
<td>6</td>
<td>750</td>
</tr>
<tr>
<td>7</td>
<td>750</td>
</tr>
<tr>
<td>8</td>
<td>750</td>
</tr>
<tr>
<td>avg</td>
<td>679.125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch</th>
<th>Helical NG</th>
<th>PT gated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.375</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation time (sec)</th>
<th>Eff mAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>mA*0.5</td>
</tr>
<tr>
<td></td>
<td>1.375</td>
</tr>
<tr>
<td></td>
<td>mA*0.227</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
control set (n = 46), weight vs image noise

15/46 = 33%

\[y = 0.0634x + 14.901 \]

\[R^2 = 0.1589 \]

\[R = 0.400 \]

Image noise (sd, hu)

Patient weight (lbs)

Median 25.2

IQ 25 = 21.6

IQ 75 = 28.9
test set (n = 30), weight vs image noise

\[y = 0.0293x + 21.511 \]

\[R^2 = 0.0665 \]

\[R = 0.2579 \]

\[\frac{4}{30} = 13\% \]

<table>
<thead>
<tr>
<th>IQ 25</th>
<th>IQ 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.7</td>
<td>29.3</td>
</tr>
</tbody>
</table>

\[\text{median} = 27.2 \]
example images – measured noise

19 hu
25.5 hu
30.1 hu

38.6 hu
41.3 hu
55.5 hu
Optimizing Dose

- Prospective triggering

- Padding
 - Longer period of beam-on time
 - Increases number of reconstructed phases
 - Linear increase in dose with padding duration
 - 0 vs 100 ms of padding = 45% reduction in dose

- Decrease padding when
 - HR variability < 5 bpm
 - HR < 65 bpm

- Tailored amount of padding can allow reduction in radiation exposure

LaBounty TM, AJR, 2010;194:933
Anomalous coronary arteries

Dose reduction
Anomalous RCA
ALARA

- Request in younger patients
- Need patient specific technique parameters
 - mA
 - kVp
 - Scan length
 - Minimize phases

Paul JF, Eur Radiology, 2007;17:30308
PT CTA: 0.4 mSv
15 yo M for anomalous coronary arteries
- 5’6” – 113 lbs (BMI 18)
- HR 64 bpm (bb)

80 kVp, mA 300
- DLP 25.3 mGy*cm
- k = 0.017*

No padding
- Single phase acquisition
- Steady heart rate
- Proximal coronary, tolerate some degree of motion

Topogram attenuation estimate to set mA
- Limitations of weight based mA selection

*Mayo JR, AJR 2009;192:646
Radiation Dose

<table>
<thead>
<tr>
<th>Source</th>
<th>Range of Effective dose (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background radiation</td>
<td>3</td>
</tr>
<tr>
<td>Chest radiograph</td>
<td>0.05 – 0.24</td>
</tr>
<tr>
<td>CT chest</td>
<td>4 - 18</td>
</tr>
<tr>
<td>Diagnostic catheter angiography</td>
<td>2 - 16</td>
</tr>
<tr>
<td>NM sestamibi stress/rest Thallium stress/rest</td>
<td>9</td>
</tr>
<tr>
<td>64d Retrospective ECG gated cardiac CT</td>
<td>12 – 18</td>
</tr>
<tr>
<td>64d RG cardiac CT with ECG dose modulation</td>
<td>8 – 18</td>
</tr>
<tr>
<td>64d Prospective ECG Triggered cardiac CT</td>
<td>2 – 4</td>
</tr>
</tbody>
</table>

Thank You