PE Imaging in 2011

- Venous thromboembolism: PE & DVT
 - 350 – 600K cases / year
- MSCTPA widely accepted as diagnostically accurate for PE
 - overutilized
- DVT imaging: US or CTV
- Case fatality rate = 7.7% (age – dependent)
PE Imaging: Questions of Interest
Sadigh G, et. al AJR 2011; 196:497 - 515

- CTPA: from insensitive for subsegmental emboli to overly sensitive?
- Risk stratification
- Technical: ECG – gated MSCTPA & MR
- Radiation issues: 8:30 AM Monday
- Future directions:
 - dual energy CT
 - computer – aided diagnosis
CTPA: Rock & a Hard Place

- Initial concern with SSCT: insensitivity
- MSCTPA: improved visualization smaller arteries = improved sensitivity
- Concerns regarding overdiagnosis
 - increased rate of PE diagnosis, little change in PE – related mortality
- NPV high for SSCT and MSCTPA – why?
CTPA: Why the Discrepancy?

- How patients are selected
- CTPA comparisons to PA angiography flawed
- Isolated subsegmental PE uncommon
- PE not as deadly as previously thought
- PE is “complicated”
PE Severity: Risk Assessment

- PE severity: mortality risk rather than an anatomic embolic burden estimate
 - expressed as 30–day or in–hospital mortality risk
PE Risk Stratification: Why Bother?

- PE with hypotension: 5 – 10% (massive)
- Up to 50% with PE: normotensive, RVD
 - “submassive” or “RV strain”
 - worse prognosis
- PE severity estimate:
 - “high-risk”: >15% mortality
 - non – high risk:
 - intermediate risk: 3 – 15% (RV strain)
 - low risk: <1%
PE Risk Stratification: Imaging

- RV size, RV / LV ratio
- Leftward IV septal bowing
- Embolic load ("clot" scores)
 - number of vessels, weighted for occlusion
 - percent vessel occlusion
- MPA size (Ao / MPA ratio)
- IVC, hepatic vein reflux
- SVC, azygos vein distension
RV Strain
Embolic Load Assessment

- Angiographically – derived obstruction scores (Miller and Walsh):
 - Bankier
 - Qanadli

- Mastora
- “Central”
- Most proximal “clot” level
Embolic Load Assessment

- Mastora scores “run lower” than Miller – derived indices
- Mastora scores 20 – 30%: PA pressure ↑
- Mastora scores ≥ 50%: PA pressure ↑↑ significantly
- death rate ↑ at 40 – 60% obstruction
Studies of CTPA PE Severity

<table>
<thead>
<tr>
<th>Author</th>
<th>RV / LV > 1</th>
<th>VSB</th>
<th>Embolic Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>van der Meer</td>
<td>+</td>
<td>No</td>
<td>11.2x ↑ at 40%</td>
</tr>
<tr>
<td>Araoz</td>
<td>No</td>
<td>+/-</td>
<td>No</td>
</tr>
<tr>
<td>Venkaesh</td>
<td>No</td>
<td>No</td>
<td>OR: 1.1</td>
</tr>
<tr>
<td>Wu</td>
<td>------------</td>
<td>-----</td>
<td>2.32 ↑ for 10%</td>
</tr>
<tr>
<td>PIOPED II</td>
<td>No</td>
<td>No</td>
<td>------------------</td>
</tr>
<tr>
<td>Schoepf</td>
<td>(> 0.9), 5.17x</td>
<td></td>
<td>------------------</td>
</tr>
<tr>
<td>Engelke</td>
<td>------------</td>
<td>-----</td>
<td>6.7x ↑ 21.3%</td>
</tr>
</tbody>
</table>
Why the Variability?

- Different patient populations
 - variable “clot” burdens (10% - > 50%)
- Variable study quality, end point numbers
- Interobserver variability
 - VSB → $\kappa = 0.54$
- Use of 4 – chamber reconstructed views of the RV
4 Chamber RV Reconstructions

4.3 cm

3.6 cm

4.3 cm

4.3 cm

4.2 cm
4 Chamber RV Reconstructions

Kang DK, et. al. CT signs of RV dysfunction. JACC CV Imag 2011; 4:841-9

Axial RV/LV = 0.98

4 Chamber RV/LV = 1.12
What to Report?

- Absence or presence of RV strain:
 - RVE, reconstruct on 4 – chamber view
 - flattening or leftward bowing of septum
 - additional findings: IVC / hepatic vein reflux, MPA enlargement
 - anything positive: consider echo, biomarkers

- Report embolic levels (at least most proximal)
MSCTPA: To Gate or Not to Gate?

• Advantages:
 ▪ reduction of cardiac motion
 ▪ RV assessment, automated calculations
 ▪ non – PE cardiac diagnoses

• Disadvantages:
 ▪ time (breath hold), tech hassle
 ▪ bolus timing
 ▪ radiation
 ▪ patient exclusion: dysrhythmia, ↑HR
ECG – Gated MCTPA

• Cardiac motion: isolated PE in RML or lingula rare
• XRT less of an issue with prospective ECG gating, high pitch CT
• Function
MR and PE Imaging

- **Advantages:**
 - no XRT, function, V/Q, DVT assessment, low contrast allergy frequency

- **Disadvantages:**
 - technical expertise, ↑ exam time, limited patient access, contraindications, fewer alternative diagnoses
MR and PE Imaging: Techniques

- Real – time, functional imaging (SSFP)
- First – pass
- Gd – MRA
- Ventilation – perfusion
- DVT assessment
MR and PE Imaging
Stein PD, et. al. PIOPED III

- Previous pooled data: sens: 77 – 100%
- PIOPED III (Gd-MRA):
 - overall: sensitivity = 78%, specificity = 99%
 - 25% exams technically inadequate
 - main, lobar PE: 79% sensitivity, 50%
 segmental, 0% subsegmental
 - pulmonary MRA & MRV:
 - technical inadequacy ↑ 52%, but ↑
 sensitivity = 92%, specificity = 96%
Due to technical expertise requirements, MR for PE limited to centers with experience.
PE: Radiation Dosimetry

- CTPA radiation dose in PIOPED II: 3.8 mSv to chest, 6 mSv to pelvis, 3.2 mSv thighs for CTV
 - CTV: axial technique, omit abdomen, upper pelvis
- Pulmonary dose reduction: ↓ kVp, mAs, iterative recon, filters, limit scan length, shielding, newer scanner technologies
Dual Energy PE Imaging

- Material decomposition: "extract" iodine component of lung to quantify perfusion

- Advantages:
 - V/Q = improved PE sensitivity?
 - risk stratification
 - perfusion defect: provide "relevance" for small emboli?

- Disadvantages:
 - + / - ↑ XRT dose, streak from dense SVC contrast
Dual Energy PE Imaging

- Moderate correlation between perfusion defects and vascular obstruction on a per - segment basis
 - partial occlusion = preserved perfusion
 - large, central emboli
 - microcirculatory disturbance: perfusion defect > obstruction
 - small, peripheral emboli
Computer – Aided Detection for PE

- **Potential benefits:**
 - improved sensitivity, specificity
 - automated risk stratification
 - training

- **Most current systems rely on vessel segmentation,** which can be time-consuming, limited sensitivity, ↑ FP rate
CAD for PE: Challenges

- Increase speed
- Real – time integration to workflow
- Reduce false positives, maintain TP
 - arteries from veins
 - lymph nodes
 - vessel bifurcations
CAD: Emboli Evaluation

- 43 patients, 33 with PE
 - CAD alone: 83% sens, 80% spec
 - rad sens ↑ 87% to 98% with use of CAD
- 2 – 5 FPs / case
- PE severity (Mastora): misclassification of PE severity by rads ↓ by CAD
Relevant References

Relevant References

Relevant References

Relevant References

Relevant References

Relevant References

• Qanadli S, et. al. New CT index to quantify arterial obstruction in PE: comparison with angiography index & echo. AJR 2011; 176:1415-20.

• Kang DK, et. al. Reproducibility of CT signs of right ventricular dysfunction in acute PE. AJR 2010; 194:1500-06.
Relevant References

- Lu MT, et. al. Interval increase in right-left ventricular diameter ratios at CT as a predictor of 30-day mortality after acute PE: initial experience. Radiology 208; 246:281-87.

Relevant References

Relevant References

