Multimodality imaging for guiding electrophysiology

Benoit Desjardins, MD, PhD
Associate Professor
Radiology and Medicine
University of Pennsylvania

no financial conflicts

cardiac MRI with Gad is off-label
Introduction

- cardiac electrophysiology (EP) is the study of arrhythmia

- imaging has proven useful in EP
 - cardiac structure plays key role in arrhythmogenesis
 - imaging is great to depict cardiac structure
 - imaging is now integral part of EP procedures

- this talk: use and benefit of multimodality imaging techniques
 - during atrial and ventricular EP procedures (esp. ablation)
 - pre-, intra- and post-procedural imaging
Electro-anatomic (EA) mapping

- modern cardiac electrophysiology
 - uses catheters to assess electric properties of the heart
 - intravascular or intrapericardial
 - tip of catheter can
 - measure intracardiac surface voltages
 - deliver RF ablation lesions
- EP systems can track 3D position of catheter tip
 - 3D position used to define **coarse** 3D anatomy
 - voltage measurements used to define scar
 - low voltage (red) corresponds to scar
Imaging integration

- anatomy generated by EP systems is limited
- imaging can be integrated to generate **better** anatomic information

principles of integration

- 3D anatomy by MRI/CT/echo
- coarse 3D point cloud by EP system
- these two 3D datasets can be registered

objectives of integration

- minimizing radiation exposure
 - by replacing the need for fluoroscopy
- enhancing procedural outcomes
- minimizing potential of complications
Scar: MRI vs EA maps

- MRI most often integrated to EP because of ability to depict scar
- high signal on DE-MRI
- low voltage of EA mapping
- good match between the two

Desjardins, Heart Rhythms 2009
Sampling: MRI vs EA maps

- MRI: uniform sampling
- EAM: non-uniform sampling
- sometimes discrepancies

- here, MRI says “scar” but EA mapping says “no scar”
- incomplete sampling on EAM

Desjardins, Heart Rhythms 2009
Scar distribution

- Two big advantages of MRI over EAM
 - Better sampling
 - Better wall depth assessment
- MRI much better than EA maps to assess
 - Complex distribution of scar (NICM)
 - Diffuse scar (HCM)
 - Intramural scar
- EAM can be normal or difficult to interpret when scar distribution is complex or patchy
Atrial arrhythmia: pre-procedural imaging

- atrial fibrillation
- arrhythmia originates at PV ostia
- goal: electrically isolate PVs

Role of imaging
- facilitates catheter selection and manipulation
- identify landmark for registration
- rule out atrial thrombi
Other structures

- Phrenic nerve
 - right pericardiophrenic artery
 - close to right phrenic nerve
 - identify anatomy more vulnerable to phrenic nerve injury

- Esophagus
 - close contact to LA wall
 - may lie within ablation zone
 - marked variation in the anatomic relationship

Horton, Heart Rhythm 2010

Lemola, Circ 2004
LA scarring

- long term atrial fibrillation can result in scar in LA wall
- can be imaged by MRI ("controversial", with limited reproducibility)
- scar predicts rate of recurrence of afib following ablation (Oakes, Circ 2009)
- might help select appropriate candidates for afib ablation
Intra-procedural imaging

- interactive 3D anatomy (virtual reality)
 - guidance of catheter
 - visualization of location of ablation lesions
 - series of adjacent punctiform lesions
 - replaces long periods of fluoroscopy
Intra-cardiac echocardiography (ICE)

- **advantages**
 - real-time visualization of anatomy
 - real-time guidance of catheter
 - visualize esophagus to avoid collateral damage
 - helps recognize complications

- **acoustic radiation force imaging**
 - assess tissue elasticity
 - ablation lesions are stiffer
 - so can detect gaps between ablation lesions during the procedure

Eyerly, Heart Rhythm 2012
Contact force sensing

- ablation requires **good contact** of catheter with myocardium
 - usually assessed by impedance and echocardiography

- new technique: contact force sensing
 - assesses contact by pressure detectors on catheter
 - improve clinical outcomes, shorten fluoroscopy times, reduce the risk of cardiac perforation

LA ablation outcomes

- poorer outcomes:
 - persistent AF, obesity, ↑ LA size, ↑ age, HTN, LA fibrosis

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>meds only</td>
<td>23%</td>
</tr>
<tr>
<td>single ablation</td>
<td>57-86%</td>
</tr>
<tr>
<td>multiple ablations</td>
<td>71%</td>
</tr>
<tr>
<td>multiple ablations + meds</td>
<td>77%</td>
</tr>
<tr>
<td>12 months</td>
<td>9-58%</td>
</tr>
</tbody>
</table>

gaps can develop in ablation lines over time

HRS/EHRA/ECAS Catheter and Surgical Ablation, Europace 2012
Post-procedural imaging

- Ablation lesions must be **confluent without gaps**
 - Gaps can result in PV reconnection and recurrence of fib (Badger, Circ AE 2010, Ranjan, Circ AE 2011)
- MRI used to identify gaps in ablation lines (Peters, Radiology 2007)
 - Ablation lesions on DE-MRI show as bright signal

McGann, JACC 2008
Complications

- PV stenosis
- atrial wall edema
- atrio-esophageal fistula

Pre and post images:

- Okada JACC 2007 49 1436
- Schley Europace 2006 8(3): 18
Ventricular arrhythmia: pre-procedural imaging

- ventricular tachycardia/fibrillation
 - surviving muscle bundles within scar likely responsible for arrhythmia (Bolick, Circulation 2006)
- **scar contains majority of the arrhythmogenic substrate** (critical sites) (Desjardins, Heart rhythm 2009, Bogun, JACC 2009)
- goal: target ("burn") arrhythmogenic substrate
- EA maps reflects location of scar (Marchlinski, Circ 2000)
Effectiveness of LV ablation guided by EA maps

- **Prospective**
 - Tanner, JCE 2010 (N=63, F/U 12mo)
 - 81% success, 37% recurrence
 - Stevenson, Circ 2008 (N=231, F/U 6mo)
 - 49% success, 47% recurrence

- **Clinical trial: ICD vs ICD + ablation**
 - Reddy, NEJM 2007 (N=128, F/U 24mo)
 - shocks: post ablation 9%, controls 31%
 - Kuck, Lancet 2010 (N=107, F/U 24mo)
 - no VTs: post ablation 47%, controls 29%
 - recurrence VT: post ablation 19mo, controls 6mo
Imaging to improve scar detection

- MRI provides **better** assessment of scar
 - gold standard (Kim, Circ 1999)
 - helpful in localizing scar
 - guide and target arrhythmogenic tissue
 (Bogun, JACC 2009, Njeim, J Cardio Electro 2015)

- CT can also be used to assess scar
 - bright signal on delayed imaging, similar to DE-MRI
 - wall thinning + hypoperfusion
 (Komatsu, Circ AE 2013)
Scar characteristics can help identify targets

- Scar distribution involving 25-75% of wall thickness predictive of inducible VT
- Grey zone
 - Mix of scar and normal tissue
 - Strong predictor of arrhythmia

Nazarian Circ 2005 112:2821-25

Roes, Circ CV Imag 2009
Scar distribution to determine access

- non-ischemic cardiomyopathy
 - scar predominantly intramurally (Neilan, JACC Cardio Im 2013)
 - is epicardial procedure necessary? (Sosa, J Cardio Electro 1996)
- pre-procedural imaging with MRI is helpful
 - location of scar on MRI correlated with planning and outcomes of ablation (Bogun, JACC 2009)

Diagram:

- Do DE-MRI
 - Scar
 - Endocardial
 - Ablate endo, high success
 - Endocardial, Intramural extension
 - Ablate endo, lower success
 - Epicardial
 - Ablate epi, high success
 - Intramural
 - No ablation
 - No scar
 - Ablate endo, lower success

Desjardins, Heart Rhythms 2009
Bogun, JACC 2010
Sympathetic denervation

- viable but *denervated myocardium prone to arrhythmias*
- denervation defect usually larger than scar
- SPECT imaging (MIBG, norepinephrine analog)
- PET imaging (HED, epinephrine analog)

SPECT
Klein, Circ AE 2015

PET
Sasano, JACC 2008
Ventricular ablation: *intra*-procedural imaging

- display of
 - cardiac chambers
 - vessels
 - scar (yellow)
 - surrounding structures
Intra-cardiac echocardiography

- ICE (CARTOSound)
 - ICE catheter in RV or RA
 - gated, 90-degree sector images to generate 3D volume
 - for registration of CT or MRI images
 - better than registration with EA mapping (Bunch, J Cardio Electro 2010)
 - identify complications (eg thrombus)
 - identify scar tissue in animals (Callans, Circ 1999)
 - wall thinning
 - increased echo density (Bala, Circ AE 2011)
Papillary muscles

- integration of catheter tip into ultrasound image
- helps locate catheter tip on ICE
- important to target arrhythmias in locations constantly moving (eg papillary muscles)

(Good, Heart Rhythm 2008)
Post procedure imaging

- MRI
 - assess lesion formation (Ilg, JACC Cardio Im 2010)
 - not used to assess success of VT ablation
 - kinetics requires too long a delay for DE-MRI (90 mins)

Dickfeld, JACC 2006
Current limitations

- still further room for improvement
- spatial resolution of scar imaging can be improved
- registration with imaging is not perfect
- display of fiber orientation may be important for arrhythmogenesis
 - in vivo imaging is problematic
- ICE for identification of ablation lesions needs further development

concerns

- cost-effectiveness limits availability
- superior outcomes have not yet been demonstrated
Thank you