Imaging for Post-Repair Complications

S. Bruce Greenberg
Professor of Radiology & Pediatrics
Arkansas Children’s Hospital
University of Arkansas for Medical Sciences
Disclosure

- No financial disclosure
- Off-label use of gadolinium for MRA
Before post-repair imaging

- Surgical procedures
 - Current procedures
 - Historic procedures
- Interventional
 - Angioplasty
 - Stent

Extra-anatomic conduit
Coarctation surgery

- Surgery types
 - End-to-end anastomosis
 - Left subclavian flap
 - Patch repair
 - Interposition graft
 - Extra-anatomic conduit
- All associated with late complications
 - Re-coarctation
 - Aneurysms
Complication tendencies

- Earlier surgery
 - ↑ re-coarctation
 - ↓ hypertension

- Subclavian flap vs end-to-end repair*
 - ↑ re-coarctation
 - ↑ aneurysm

Other limitations

- **Patch repair***
 - ↑ aneurysms (especially Dacron)
 - Pregnancy aortic rupture
- **Extra-anatomic conduit**
 - Not recommended in growing child

Interventional procedures*

- **Balloon angioplasty**
 - Children < 1 year old with prior surgery
 - ↑ re-coarctation rate
 - ↑ aneurysm/aorta rupture

- **Stent placement**
 - Older children/adult
 - Expandable stents in children
 - ↓ aneurysm & re-coarctation

Recoarctation & external iliac artery stenosis following balloon angioplasty
Long term complications requiring surgery or interventional procedures*

- Re-coarctation
- Aneurysm formation

Coarctation follow-up

- Clinical
- Echocardiography
- Advanced imaging
 - Magnetic resonance imaging
 - Computed tomography angiography
Clinical limitations

- 50% re-coarctation cases: no findings*
- MRI re-coarctation detection rate same for symptomatic & asymptomatic patients*
- Aorta aneurysms are not detected**

Echo limitations

- Windows limited
 - Post operative
 - Older patient
- Re-coarctation detection < MRI
- Poor detection of post-operative descending aorta aneurysms*

25 year old with bicuspid aorta valve and prior hx coacatation
Re-coarctation of the aorta
What is re-coarctation?

- **Traditional:** gradient > 20 mm Hg
- **Morphology:** MRI or CTA
 - Aorta focal diameter reduction
 - Proximal descending aorta: diaphragm < 1.0
 - Significant re-coarctation? No consensus!
 - Moderate .41-.60
 - < 0.9
 - < 0.6
 - < 0.5
 - Puranik
 - Bogaert
 - Thanopoulos
 - Tsai
Residual isthmus narrowing
MRA shows apparent re-coarctation following subclavian flap repair. Clip artifact associated with MRI examination. Gradient 13 mm Hg
MRA shows an extra-anatomic conduit with a kink (not an artifact). Flow analysis revealed a significant gradient and collateral flow.
CTA shows two extra-anatomic conduits. The smaller conduit was outgrown. A kink in the larger lateral conduit is present (calcification and stenosis present)
Aneurysm vs pseudoaneurysm

Aorta focal diameter increase
 - Proximal descending aorta: diaphragm > 1.5

↑ risk factors
 - Balloon angioplasty
 - Patch angioplasty
 - Bicuspid aortic valve (ascending & descending aorta)*

Coarctation of the Aorta

Pseudoaneurysm following balloon angioplasty
Aneurysm protrudes anterior to distal extension of Dacron patch on dorsal aorta.
Stents for coarctation

- Compared to balloon angioplasty
 - ↓ complications compared to balloon angioplasty
 - Aortic rupture/aneurysm
 - Re-coarctation
 - Longer coverage

- Age
 - Ideal for older children and adults
 - Not recommended in children < 10 years old*

Stent complications

- Stent
 - Migration
 - Fracture
 - Cover left subclavian artery origin
 - Outgrown
- Planned reintervention
- Peripheral vascular injury
Left subclavian artery origin covered by stent
Fractures in aorta stent
Lifelong cardiology follow-up is recommended for all patients with aortic coarctation (repaired or not), including an evaluation by or consultation with a cardiologist with expertise in ACHD.

Evaluation of the coarctation repair site by MRI/CT should be performed at intervals of 5 years or less, depending on the specific anatomic findings before and after repair.
Post repair coarctation patients require life-long follow up
Clinical and echo are inadequate
MRI is the preferred imaging modality
Computed tomography angiography
 • Can substitute for MRI
 • Preferred in patients with stents